Wharton’s Jelly, a gelatinous substance found within the umbilical cord, is a rich mesenchymal stem cells (MSCs) source. These MSCs possess unique properties that make them a valuable tool in regenerative medicine, tissue engineering, and immunomodulation. Lets discuss some advantages and applications of Wharton’s Jelly stem cells along with methods used for extraction and utilization in clinical applications[1].
The outer layer of the umbilical cord is comprised of umbilical epithelium, which shall consist of one or multiple layers of epithelial cells. These cells appear similar to the epidermal and dermal layers of human skin, indicating they are likely of amniotic origin. Umbilical epithelial cells share features with both fetal epidermis and amniotic epithelium. Although morphological differences between these epithelial types are not distinct due to their connection to the amnion and fetal skin via the umbilical cord, the umbilical epithelium has the unique ability to stratify and keratinize, setting it apart from the amniotic epithelium. Additionally, umbilical epithelial cells exhibit mesenchymal stem cells properties, such as the expression of Oct-4, Nanog, and various surface markers [2].
The stromal tissue of the umbilical cord can be divided into three zones, including the sub-amniotic zone, Wharton’s jelly, and the adventitia of blood vessels. Although the typical adventitia is not present in umbilical vessels, the stromal tissue below the umbilical cord lining to the umbilical vessels is still considered Wharton’s jelly. This stromal tissue includes sub-amniotic, clefts, intervascular, and perivascular stroma.
Compared to other sources of stem cells, Wharton’s Jelly stem cells offer several advantages:
Wharton’s Jelly stem cells are being researched for their potential applications in various fields, including:
WJ-MSCs have the potential for regenerative and immunomodulatory therapy due to their immunosuppressive and immune avoidance capabilities. They have low expression of HLA class I and an absence of HLA-DR, making them optimal for allogeneic transplantation. WJ-MSCs also induce the expansion of regulatory T cells (Treg), which can suppress the effector’s responses to alloantigens [5]. Unlike Bone Marrow-MSCs, WJ-MSCs produce high levels:
These growth factors are essential for the immunosuppressive capability of MSC stem cells. WJ-MSCs can also inhibit the differentiation of CD14+ monocytes into mature DCs through direct contact and soluble factors. Additionally, WJ-MSCs mediate immunosuppression of B, T, and NK cells via different mechanisms, including the secretion of soluble factors like IDO, PGE2, and sHLA-G5, as well as the expansion of regulatory T-Cells.
To harness the potential of Wharton’s Jelly stem cells, they must first be extracted using the following steps:
Wharton’s Jelly stem cells hold remarkable potential for advancing regenerative medicine, tissue engineering, and immunomodulation. Their unique properties, combined with their ethical and accessible source, make them an attractive option for researchers and clinical applications of stem cell therapies at the Regeneration Center. As our understanding of these cells continues to grow, so too will their potential applications and the impact they have on improving human health.
[1] ^ Panta W, Imsoonthornruksa S, Yoisungnern T, Suksaweang S, Ketudat-Cairns M, Parnpai R. Enhanced Hepatogenic Differentiation of Human Wharton’s Jelly-Derived Mesenchymal Stem Cells by Using Three-Step Protocol.Supported by Suranaree University of Technology (SUT), the Office of the Higher Education Commission under National Research University (NRU) project of Thailand, Thailand Research Fund. Int J Mol Sci. 2019 Jun 20;20(12):3016. doi: 10.3390/ijms20123016. PMID: 31226809; PMCID: PMC6627410.
[2] ^ Tanthaisong P, Imsoonthornruksa S, Ngernsoungnern A, Ngernsoungnern P, Ketudat-Cairns M, Parnpai R. Enhanced Chondrogenic Differentiation of Human Umbilical Cord Wharton’s Jelly Derived Mesenchymal Stem Cells by GSK-3 Inhibitors.Thailand PLoS One. 2017 Jan 6;12(1):e0168059. doi: 10.1371/journal.pone.0168059. PMID: 28060847; PMCID: PMC5217863.
[3] ^Arutyunyan I, Elchaninov A, Makarov A, Fatkhudinov T. Umbilical Cord as Prospective Source for Mesenchymal Stem Cell-Based Therapy. Stem Cells Int. 2016;2016:6901286. doi: 10.1155/2016/6901286. Epub 2016 Aug 29. PMID: 27651799; PMCID: PMC5019943.
[4] ^ Saleh M, Fotook Kiaei SZ, Kavianpour M. Application of Wharton jelly-derived mesenchymal stem cells in patients with pulmonary fibrosis. Stem Cell Res Ther. 2022 Feb 15;13(1):71. doi: 10.1186/s13287-022-02746-x. PMID: 35168663; PMCID: PMC8845364.
[5] ^Günay AE, Karaman I, Guney A, Karaman ZF, Demirpolat E, Gonen ZB, Dogan S, Yerer MB. Assessment of clinical, biochemical, and radiological outcomes following intra-articular injection of Wharton jelly-derived mesenchymal stromal cells in patients with knee osteoarthritis: A prospective clinical study. Medicine (Baltimore). 2022 Sep 16;101(37):e30628. doi: 10.1097/MD.0000000000030628. PMID: 36123928; PMCID: PMC9478323.
If you've seen people take ice baths or cold showers and wondered if they're onto… Read More
Immunomodulation stands at the forefront of biomedical research, steering the immune system's ability to fight… Read More
Stem cell research leads the charge in medical innovation, heralding revolutionary advances in regenerative medicine.… Read More
The blood-brain barrier (BBB) is a crucial shield for the brain, regulating the entry of… Read More
While peptide bonds are fundamental to protein structure, their direct relationship with stem cells lies… Read More
When discussing cutting-edge cancer treatments, NK cell therapy stands out due to its unique approach… Read More